Convexity, Duality and Effects
نویسنده
چکیده
This paper describes some basic relationships between mathematical structures that are relevant in quantum logic and probability, namely convex sets, effect algebras, and a new class of functors that we call ‘convex functors’; they include what are usually called probability distribution functors. These relationships take the form of three adjunctions. Two of these three are ‘dual’ adjunctions for convex sets, one time with the Boolean truth values {0, 1} as dualising object, and one time with the probablity values [0, 1]. The third adjunction is between effect algebras and convex functors.
منابع مشابه
SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملWEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملDuality Theory of Non-convex Technologies
Duality Theory of production imposes a number of simplifying assumptions regarding the production technology, including various maintained convexity assumptions. Emphasizing the technological information content of alternative models, this paper challenges some widely held views on the role of convexity. The role of convexity in Duality Theory is asymmetric: While convexity is of importance in ...
متن کاملConvexity Properties Associated with Nonconvex Quadratic Matrix Functions and Applications to Quadratic Programming
We establish several convexity results which are concerned with nonconvex quadratic matrix (QM) functions: strong duality of quadratic matrix programming problems, convexity of the image of mappings comprised of several QM functions and the existence of a corresponding SLemma. As a consequence of our results, we prove that a class of quadratic problems involving several functions with similar m...
متن کاملHigher-Order Duality for Minimax Fractional Type Programming Involving Symmetric Matrices
Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of ( , , , , , ) F d b vector-pseudoquasi-Type I and formulate a higher-order duality for minimax fract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010